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6. Experiments
In our experiments, we reused two datasets, namely DBP-WD and DBP-YG, 
recently proposed in [3]. The comparison results of MultiKE and other 
embedding-based entity alignment methods are shown in the following table:

Experimental results:
Ø MultiKE significantly outperformed the others on all the metrics.
Ø The three variants all achieved similar results.
Ø The three views all contributed to entity alignment.

7. Conclusion
We proposed a multi-view KG embedding framework for entity alignment.
Ø The framework learns entity embeddings from three representative views of 

KGs, name view, relation view, and attribute view.
Ø We introduced two cross-KG training methods for alignment inference. 
Ø We designed three kinds of strategies to combine view-specific embeddings. 

1. Introduction
Background:
Ø Entity alignment, a.k.a. entity matching or resolution, aims to find entities 

in different KGs referring to the same real-world identity.
Ø Entities in KGs have various features, but the current embedding-based 

entity alignment methods exploit just one or two types of them.
Ø The existing embedding-based entity alignment methods rely on abundant 

seed entity alignment as labeled training data[1].
MultiKE: 
Ø We define three representative views based on the name, relation and 

attribute features to learn entity embeddings.
Ø Two cross-KG identity inference methods are designed to preserve and 

enhance the alignment between different KGs.
Ø We present three different strategies to combine multiple view-specific 

entity embeddings.
2. Problem Formulation

Preliminaries: We formalize a KG as a 7-tuple 𝐆 = (𝐄, 𝐑, 𝐀, 𝐕, 𝐍, 𝐗, 𝐘), 
where E, R, A and V denote the sets of entities, relations, attributes and 
literals, respectively. 𝐍 ⊆ 𝐄×𝐕 denotes the name view, 𝐗 ⊆ 𝐄×𝐑×𝐄 denotes 
the relation view, and 𝐘 ⊆ 𝐄×𝐀×𝐕 denotes the attribute view. The name, 
relation and attribute views are marked by (1) , (2) and (3), respectively. 
Problem: Given a source KG 𝐆/ = (𝐄/, 𝐑/, 𝐀/, 𝐕/, 𝐍/, 𝐗/, 𝐘/) and a target 
KG 𝐆0 = (𝐄0, 𝐑0, 𝐀0, 𝐕0, 𝐍0, 𝐗0, 𝐘0), entity alignment aims to find a set of 
identical entities 𝐌 = 𝐞3, 𝐞4 ∈ 𝐄/×𝐄0|𝐞3 ≡ 𝐞4 , where “≡” denotes the 
equivalence relationship.

3. Multi-view KG Embedding
Literal embedding: 
Let 𝑙 = 𝑜:, 𝑜;, … , 𝑜= denote a literal of 𝑛 tokens. We employ an autoencoder
to encode a list of token embeddings into one literal embedding :

𝜑 𝑙 = encode LP 𝑜: ; LP 𝑜; ;… ; LP 𝑜H ,
where encode(·) returns the compressed representation of the input 
embeddings, LP(·) is defined as a lookup function that maps the input to an 
embedding, and [ ; ] denotes the concatenation operation.
Name view embedding: 
We embed the name view using the above literal embeddings. Given an entity 
ℎ, its name embedding is defined as follows: 

𝐡(:) = 𝜑(name(ℎ)),
where name(·) extracts the name of the input object.
Relation view embedding:
We adopt TransE [2] to preserve relational structures. Given a relation fact (h, 
r, t), we use the following score function to measure the plausibility:

𝑓OPQ 𝐡(𝟐), 𝐫, 𝐭(𝟐) = − 𝐡(𝟐) + 𝐫 − 𝐭(𝟐) .
Then, we define the probability of (h, r, t) being a real relation fact as follows:

𝑃OPQ 𝜁(Z,O,[) = 1|Θ(;) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓OPQ 𝐡(𝟐), 𝐫, 𝐭(𝟐) ,
where Θ(;) denotes the relation view embeddings and 𝜁(Z,O,[) denotes the label 
(1 or -1) of (h, r, t). We parameterize Θ(;) by minimizing the loss below:
𝐿 Θ(;) =d

(h, r, t)∈𝐗e∪𝐗g
log 1 + exp −𝜁(Z,O,[)𝑓OPQ 𝐡(𝟐), 𝐫, 𝐭(𝟐) ,

where  𝐗l = 𝐗/ ∪ 𝐗0, denotes real relation fact set, while  𝐗m denotes the set 
of faked ones sampled by replacing the head or tail entities with random ones.
Attribute view embedding:
For the attribute view, we use a convolutional neural network(CNN) to extract 
features from the attributes and values of entities. Given an attribute fact (h, a, 
v) in KGs, we define the following score function to measure its plausibility:

𝑓n[[O 𝐡(𝟑), 𝐚, 𝐯 = − 𝐡(𝟑) − CNN 𝐚; 𝐯 ,
where CNN(·) denotes a convolution operation. This objective can be 
achieved by minimizing the following logistic loss:

𝐿 Θ(t) =d
(h, a, v)∈𝐘e

log 1 + exp −𝑓n[[O 𝐡(𝟑), 𝐚, 𝐯 ,

where 𝐘l = 𝐘/ ∪ 𝐘0 denotes the real attribute fact set, and Θ(t) denotes the 
attribute view embeddings.

Features Methods
DBP-WD DBP-YG

Hits@1 Hits@10 MR MRR Hits@1 Hits@10 MR MRR

Relation
only

MTransE 28.12 51.95 656 0.363 25.15 49.29 512 0.334
IPTransE 34.85 63.84 265 0.447 29.74 55.76 158 0.386
BootEA 74.79 89.84 109 0.801 76.10 89.44 34 0.808
GCN-Align 47.70 75.96 1,988 0.577 60.05 84.14 299 0.686 

R
el

.+

Attr. JAPE 31.84 58.88 266 0.411 23.57 48.41 189 0.320 
Desc. KDCoE 57.19 69.53 182 0.618 42.71 48.30 137 0.446
Literal AttrE 38.96 66.77 142 0.487 23.24 42.70 706 0.300

Multi-view
MultiKE-WVA 90.42 94.59 22 0.921 85.92 94.99 19 0.891
MultiKE-SSL 91.86 96.26 39 0.935 82.35 93.30 21 0.862
MultiKE-ITC 91.45 95.19 114 0.928 88.03 95.32 35 0.906

4. Cross-KG Training for Entity Alignment
Entity Identity Inference:
Given a relation fact (h, r, t), if (h, uℎ) appears in the seed entity alignment, we 
add the following auxiliary probability:

𝑃OPQ 𝜁(Z,O,[) = 1|Θ(;) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓OPQ 𝐡(𝟐), 𝐫, 𝐭(𝟐) ,
We maximize these auxiliary probabilities over the relation facts having those 
entities in the seed entity alignment. The loss is computed as follows:

Codes and datasets of MultiKE are available at https://github.com/nju-websoft/MultiKE.

5. View Combination
Weighted View Averaging:
Let v𝐡 denote the combined embedding for h. Without loss of generality, let 𝐷
be the number of views, and we have v𝐡 = ∑yz:{ 𝑤y𝐡(y), where 𝑤y is the weight 
of 𝐡(y) , and can be calculated by:

𝑤y =
cos 𝐡(y), �̅�

∑�z:{ cos 𝐡(�), �̅�
,

Where �̅� is the average of multi-view embeddings of h.
Shared Space Learning:
Let �𝐇 be the combined embedding matrix for all entities, and 𝐇(y) be the 
entity embedding matrix under the ith view. We minimize the mapping loss:

𝐿��� �𝐇, 𝐙 =d
yz:

{
�𝐇 − 𝐇(y)𝐙(y) �

; + 𝐈 − 𝐙 y �𝐙(y) �
;

,

where 𝐙(y) serves as the mapping from the ith view-specific embedding space 
to the shared space, and 𝐈 is the identity matrix.
In-training Combination:
This combination participates in the joint training, and the loss is:

𝐿��� �𝐇,𝐇 =d
yz:

{
�𝐇 − 𝐇(y)

�
;

,

where 𝐇 = ⋃𝒊z𝟏
𝑫 𝐇(y).

𝐿�� Θ(;) =d
(h, r, t)∈𝐗�

log 1 + exp −𝑓OPQ �𝐡(𝟐), 𝐫, 𝐭(𝟐)

+d
(h, r, t)∈𝐗��

log 1 + exp −𝑓OPQ 𝐡(𝟐), 𝐫, �̂�(𝟐) ,

where 𝐗� and 𝐗��refer to the sets of relation facts whose head and tail entities 
are in the seed entity alignment, respectively.
Relation and Attribute Identity Inference:
We add the auxiliary probabilities for the cross-KG relation and attribute 
identity inference. Let 𝑠𝑖𝑚 𝑟, �̂� denote the similarity of 𝑟, �̂� , and the loss is:
𝐿��� Θ(;) =d

(h, r, t)∈𝐗���
𝑠𝑖𝑚 𝑟, �̂� log 1 + exp −𝑓OPQ 𝐡(𝟐), �𝐫, 𝐭(𝟐) ,

where 𝐗��� denotes the set of relation facts having the soft alignment relations.

https://github.com/nju-websoft/MultiKE

