
1. Introduction
Background

 Knowledge-based question answering (KBQA) systems transform natural

language questions to formal queries (e.g., SPARQL).

 Formal query generation aims to generate correct executable queries over

knowledge bases, given entity and relation linking results.

 Formal query generation is expected to have the capabilities of:

(1) Recognize and paraphrase differnet kinds of constraints, e.g., "movie"

stands for a type constraint <dbo:Film>; "the same … as" stands for a

subgraph-level constraint in the dashed box;

(2) Recognize and paraphrase aggregations, e.g., "How many"COUNT;

(3) Organize all the above to generate an executable query.

 Current approaches may suffer from the lack of training data, especially

for long-tail questions with rarely appeared structures. Furthermore,

current approaches cannot handle questions with unseen query structures.

Main idea

 Observation: the query structure for a complex question may rarely

appear, but it usually contains some query substructures that frequently

appeared in other questions.

 Instead of predicting the query structure for the whole question, we predict

(all) query substructures contained in the question.

Leveraging Frequent Query Substructures to Generate Formal Queries

for Complex Question Answering
Jiwei Ding, Wei Hu, Qixin Xu and Yuzhong Qu

National Key Laboratory for Novel Software Technology, Nanjing University, China

{jwdingnju,qxxunju}@outlook.com, {whu,yzqu}@nju.edu.cn

3. Experiments
Datasets

 LC-QuAD: 3,253 questions (2,249 complex) over DBpedia(2016-04).

 QALD-5: 311 questions (192 complex) over DBpedia(2015-10).

End-to-end results

 SubQG outperformed all existing approaches on both datasets, and

gained a more significant improvement on complex questions.

Results on varied sizes of training data

 SubQG achieved a stable improvement (9% ~16%) compared with the

approach which directly predicts the appropriate query structure for the

whole input question.

Although the merging method impaired the overall precision a little bit, it

shows a bigger improvement on recall, especially when there is few

training data (since more test questions have unseen query structures).

4. Conclusion
We introduced SubQG, a formal query generation approach based on

frequent query substructures.

 SubQG firstly utilizes multiple neural networks to predict query

substructures contained in the question, and then ranks existing query

structures using a combinational function.

 SubQG merges query substructures to build new query structures for

questions without appropriate query structures in the training data.

 SubQG achieved better results than the existing approaches in QALD-5

and LC-QuAD, especially for complex questions.

2. The Proposed Approach (SubQG)
Preliminaries

 Query structure is defined as a set for all structurally-equivalent queries.

 For two query structures 𝑆𝑎 and 𝑆𝑏, if the representative query of 𝑆𝑎 has a

subgraph which is structurally-equivalent with the representative query of

𝑆𝑏, we say 𝑆𝑏 is a query substructure of 𝑆𝑎.

 Illustration of a query, a query structure and query substructures:

Framework

// EMNLP 2019

Offline training

 Collect query structures. We first discover the structurally equivalent

queries in the training data, and then extract all query structures.

 Collect frequent query substructures. We decompose each query

structure to collect query substructures. A query substructure is considered

as a frequent query substructure if it appears more than 𝛾 times.

 Train query substructure predictors. We train an Attention-based

BiLSTM network for each frequent query substructure, to predict whether

the target query of the input question contains the substructure or not.

Online query generation

Average F1-scores of query generation

Average F1-scores for complex questions

