

Leveraging Frequent Query Substructures to Generate Formal Queries for Complex Question Answering Jiwei Ding, Wei Hu, Qixin Xu and Yuzhong Qu

National Key Laboratory for Novel Software Technology, Nanjing University, China {jwdingnju,qxxunju}@outlook.com, {whu,yzqu}@nju.edu.cn

1. Introduction

Background

- > Knowledge-based question answering (KBQA) systems transform natural language questions to formal queries (e.g., SPARQL).
- > Formal query generation aims to generate correct executable queries over knowledge bases, given entity and relation linking results. How many movies have the same director as The Shawshank Redemption?

Offline training

- > Collect query structures. We first discover the structurally equivalent queries in the training data, and then extract all query structures.
- > Collect frequent query substructures. We decompose each query structure to collect query substructures. A query substructure is considered as a frequent query substructure if it appears more than γ times.
- > Train query substructure predictors. We train an Attention-based BiLSTM network for each frequent query substructure, to predict whether the target query of the input question contains the substructure or not. **Online query generation**

How many movies have the same director as The Shawshank Redemption?

- \succ Formal query generation is expected to have the capabilities of:
 - (1) Recognize and paraphrase differnet kinds of constraints, e.g., "movie" stands for a type constraint <dbo:Film>; "the same ... as" stands for a subgraph-level constraint in the dashed box;
 - (2) Recognize and paraphrase aggregations, e.g., "How many" \rightarrow COUNT; (3) Organize all the above to generate an executable query.
- \succ Current approaches may suffer from the lack of training data, especially for long-tail questions with rarely appeared structures. Furthermore, current approaches cannot handle questions with unseen query structures. Main idea
- > **Observation:** the query structure for a complex question may rarely appear, but it usually contains some query substructures that frequently appeared in other questions.
- \succ Instead of predicting the query structure for the whole question, we predict (all) query substructures contained in the question.

2. The Proposed Approach (SubQG)

Preliminaries

- Query structure is defined as a set for all structurally-equivalent queries.
- For two query structures S_a and S_b , if the representative query of S_a has a subgraph which is structurally-equivalent with the representative query of S_b , we say S_b is a **query substructure** of S_a .
- 4. Grounding and validation

Illustration of a query, a query structure and query substructures: How many movies were directed by the graduate of Burbank High School?

Datasets

 \succ LC-QuAD: 3,253 questions (2,249 complex) over DBpedia(2016-04). \triangleright QALD-5: 311 questions (192 complex) over DBpedia(2015-10).

End-to-end results

Average F1-scores for complex questions					
		LC-QuAD	QALD-5		
	CompQA	$0.673_{\pm 0.009}$	$0.260_{\pm 0.082}$		
	SubQG	$0.779_{\pm 0.017}$	$0.392_{\pm 0.156}$		

Average F1-scores of query generation				
	LC-QuAD	QALD-5		
Sina (Shekarpour et al., 2015)	0.24	0.39		
NLIWOD	0.48	0.49		
SQG (Zafar et al., 2018)	0.75	-		
CompQA (Luo et al., 2018)	$0.772_{\pm 0.014}$	$0.511_{\pm 0.043}$		
SubQG (our approach)	$0.846_{\pm 0.016}$	$0.624_{\pm 0.030}$		

SubQG outperformed all existing approaches on both datasets, and gained a more significant improvement on complex questions. **Results on varied sizes of training data**

> Although the merging method impaired the overall precision a little bit, it shows a bigger improvement on recall, especially when there is few training data (since more test questions have unseen query structures).

4. Conclusion

- We introduced SubQG, a formal query generation approach based on frequent query substructures. \succ SubQG firstly utilizes multiple neural networks to predict query substructures contained in the question, and then ranks existing query
- structures using a combinational function.
- SubQG merges query substructures to build new query structures for questions without appropriate query structures in the training data.
- SubQG achieved better results than the existing approaches in QALD-5 and LC-QuAD, especially for complex questions.

