
1. Introduction
Background

 Knowledge-based question answering (KBQA) systems transform natural 

language questions to formal queries (e.g., SPARQL).

 Formal query generation aims to generate correct executable queries over 

knowledge bases, given entity and relation linking results. 

 Formal query generation is expected to have the capabilities of: 

(1) Recognize and paraphrase differnet kinds of constraints, e.g., "movie" 

stands for a type constraint <dbo:Film>; "the same … as" stands for a 

subgraph-level constraint in the dashed box;

(2) Recognize and paraphrase aggregations, e.g., "How many"COUNT;

(3) Organize all the above to generate  an executable query.

 Current approaches may suffer from the lack of training data, especially 

for long-tail questions with rarely appeared structures. Furthermore, 

current approaches cannot handle questions with unseen query structures.

Main idea

 Observation: the query structure for a complex question may rarely 

appear, but it usually contains some query substructures that frequently 

appeared in other questions.

 Instead of predicting the query structure for the whole question, we predict 

(all) query substructures contained in the question.
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3. Experiments
Datasets

 LC-QuAD: 3,253 questions (2,249 complex) over DBpedia(2016-04).

 QALD-5: 311 questions (192 complex) over DBpedia(2015-10).

End-to-end results

 SubQG outperformed all existing approaches on both datasets, and 

gained a more significant improvement on complex questions.

Results on varied sizes of training data

 SubQG achieved a stable improvement (9% ~16%) compared with the 

approach which directly predicts the appropriate query structure for the 

whole input question.

Although the merging method impaired the overall precision a little bit, it 

shows a bigger improvement on recall, especially when there is few 

training data (since more test questions have unseen query structures). 

4. Conclusion
We introduced SubQG, a formal query generation approach based on 

frequent query substructures.

 SubQG firstly utilizes multiple neural networks to predict query 

substructures contained in the question, and then ranks existing query 

structures using a combinational function.

 SubQG merges query substructures to build new query structures for 

questions without appropriate query structures in the training data.

 SubQG achieved better results than the existing approaches in QALD-5 

and LC-QuAD, especially for complex questions.

2. The Proposed Approach (SubQG)
Preliminaries

 Query structure is defined as a set for all structurally-equivalent queries.

 For two query structures 𝑆𝑎 and 𝑆𝑏,  if the representative query of 𝑆𝑎 has a 

subgraph which is structurally-equivalent with the representative query of 

𝑆𝑏, we say 𝑆𝑏 is a query substructure of 𝑆𝑎.

 Illustration of a query, a query structure and query substructures:
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Offline training

 Collect query structures. We first discover the structurally equivalent 

queries in the training data, and then extract all query structures.

 Collect frequent query substructures. We decompose each query 

structure to collect query substructures. A query substructure is considered 

as a frequent query substructure if it appears more than 𝛾 times.

 Train query substructure predictors. We train an Attention-based 

BiLSTM network for each frequent query substructure, to predict whether 

the target query of the input question contains the substructure or not. 

Online query generation

Average F1-scores of query generation

Average F1-scores for complex questions


