courses:ke
差别
这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录前一修订版后一修订版 | 前一修订版 | ||
courses:ke [2024/02/28 15:10] – [课程报告] whu | courses:ke [2025/03/31 15:18] (当前版本) – [课堂研讨] whu | ||
---|---|---|---|
行 20: | 行 20: | ||
教师:[[http:// | 教师:[[http:// | ||
授课对象:南京大学研究生\\ | 授课对象:南京大学研究生\\ | ||
- | 授课地点:仙 II-111\\ | + | 授课地点:仙 II-316\\ |
- | 授课时间:周三 7~8 节\\ | + | 授课时间:周五 3~4 节\\ |
参考教材:瞿裕忠, | 参考教材:瞿裕忠, | ||
行 33: | 行 33: | ||
- XML、RDF(S)、OWL | - XML、RDF(S)、OWL | ||
- 本体构建 | - 本体构建 | ||
+ | - 逻辑与推理 (赵一铮副教授) | ||
- 语义网数据管理 | - 语义网数据管理 | ||
- 基于本体的知识管理 | - 基于本体的知识管理 | ||
行 38: | 行 39: | ||
- 知识融合 | - 知识融合 | ||
- 智能问答 | - 智能问答 | ||
- | - 逻辑与推理 (李言辉博士) | ||
---- | ---- | ||
行 48: | 行 48: | ||
**论文挑选规则.** 两人一组,根据报告人学号尾数按 mod 3 的余数选择论文主题;每个主题内的论文可以自由选择;每组报告时长为 15 分钟,外加两分钟问答;课堂进行研讨。 | **论文挑选规则.** 两人一组,根据报告人学号尾数按 mod 3 的余数选择论文主题;每个主题内的论文可以自由选择;每组报告时长为 15 分钟,外加两分钟问答;课堂进行研讨。 | ||
- | * **第一次课堂研讨的论文: | + | * **第一次课堂研讨的论文: |
* 知识抽取 (// | * 知识抽取 (// | ||
- | * Relation Classification via Multi-Level Attention CNNs (简单) | ||
- | * End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF | ||
* Improving Distantly-Supervised Relation Extraction with Joint Label Embedding | * Improving Distantly-Supervised Relation Extraction with Joint Label Embedding | ||
- | * Attention Guided Graph Convolutional Networks for Relation Extraction | ||
* Double Graph Based Reasoning for Document-level Relation Extraction | * Double Graph Based Reasoning for Document-level Relation Extraction | ||
+ | * GoLLIE: Annotation Guidelines Improve Zero-Shot Information-Extraction | ||
* 知识库构建 (// | * 知识库构建 (// | ||
- | * DBpedia: A Nucleus for a Web of Open Data (简单) | + | * DBpedia: A Nucleus for a Web of Open Data |
- | * Incremental Knowledge Base Construction Using DeepDive | + | |
* Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion | * Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion | ||
* Probase: A Probabilistic Taxonomy for Text Understanding | * Probase: A Probabilistic Taxonomy for Text Understanding | ||
- | * DISCOS: Bridging the Gap between Discourse Knowledge and Commonsense Knowledge | ||
* 预训练语言模型 (// | * 预训练语言模型 (// | ||
- | * Language Models as Knowledge Bases? (简单) | ||
* K-BERT: Enabling Language Representation with Knowledge Graph | * K-BERT: Enabling Language Representation with Knowledge Graph | ||
- | * KG-BERT: BERT for Knowledge Graph Completion | ||
- | * Sequence-to-Sequence Knowledge Graph Completion and Question Answering | ||
* ERNIE: Enhanced Language Representation with Informative Entities | * ERNIE: Enhanced Language Representation with Informative Entities | ||
+ | * KnowLA: Enhancing Parameter-efficient Finetuning with Knowledgeable Adaptation | ||
- | * **第二次课堂研讨的论文: | + | * **第二次课堂研讨的论文: |
* 搜索推荐 (// | * 搜索推荐 (// | ||
- | * Learning to Explain Entity Relationships by Pairwise Ranking with Convolutional Neural Networks (简单) | + | * |
- | * Fielded Sequential Dependence Model for Ad-Hoc Entity Retrieval in the Web of Data | + | |
- | * What Links Alice and Bob?: Matching and Ranking Semantic Patterns in Heterogeneous Networks | + | |
- | * Knowledge Graph Convolutional Networks for Recommender Systems | + | |
- | * RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems | + | |
* 知识融合 (// | * 知识融合 (// | ||
- | * Learning to Map Between Ontologies on the Semantic Web (简单) | + | * |
- | * PARIS: Probabilistic Alignment of Relations, Instances, and Schema | + | |
- | * Deep Learning for Entity Matching: A Design Space Exploration | + | |
- | * Resolving Conflicts in Heterogeneous Data by Truth Discovery and Source Reliability Estimation | + | |
- | * Deep Entity Matching with Pre-Trained Language Models | + | |
* 机器问答 (// | * 机器问答 (// | ||
- | * Automated Template Generation for Question Answering over Knowledge Graphs (简单) | + | * |
- | * Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text | + | |
- | * Answering Natural Language Questions by Subgraph Matching over Knowledge Graphs | + | |
- | * Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings | + | |
- | * RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering | + | |
---- | ---- | ||
行 93: | 行 75: | ||
主要包括两种形式:一种是对于平时自己科研工作中的问题,从知识工程的角度,进行设计、实现、实验等。另一种是在知识工程领域中,挑选一个技术热点,做有一定深度和时效性的调研,并以技术综述的形式总结自己的调研结果。\\ | 主要包括两种形式:一种是对于平时自己科研工作中的问题,从知识工程的角度,进行设计、实现、实验等。另一种是在知识工程领域中,挑选一个技术热点,做有一定深度和时效性的调研,并以技术综述的形式总结自己的调研结果。\\ | ||
- | 截止日期:2024 年 7 月 31 日 (AOE) \\ | + | 截止日期:2025 年 7 月 31 日 (AOE) \\ |
格式要求:A4、单栏、单倍行距、五号字、6~7 页 (含参考文献) \\ | 格式要求:A4、单栏、单倍行距、五号字、6~7 页 (含参考文献) \\ | ||
提交邮箱:whu@nju.edu.cn | 提交邮箱:whu@nju.edu.cn | ||
行 104: | 行 86: | ||
<WRAP half column> | <WRAP half column> | ||
教师:[[whu@nju.edu.cn|胡伟]]\\ | 教师:[[whu@nju.edu.cn|胡伟]]\\ | ||
- | 答疑时间:周三下午 2~4 点 | + | 答疑时间:周五下午 2~4 点 |
</ | </ | ||
<WRAP half column> | <WRAP half column> | ||
- | QQ群:138885295 | + | QQ群:1034965957 |
地点:仙林校区计算机楼 405 室 | 地点:仙林校区计算机楼 405 室 | ||
</ | </ |
courses/ke.1709104252.txt.gz · 最后更改: 2024/02/28 15:10 由 whu